今回も「
軸に対して対称移動」の時に使用した適当な関数y=f(x)のグラフを使います。
図57のグラフを
軸に対して対称移動すると図58のようになりますね。
ではこの
を
の式を使って表してみましょう。そのためには
と
の関係を調べなくてはなりませんね。そこで
軸対称という特徴を表すような点に注目して図59のように
、
、
を決めてみます。
今回は
軸に対称に移動していますから、
に
を代入した
と
に
を代入した
が同じ出力
になっています。
ここで を
で表してみたいのですが、もちろん
とは書けません。ですがこの辺まで理解してきた皆さんは、もう簡単に気付けるようになってますよね?
のグラフは、
を入れたときちょうど
に
を入れた
と同じ値になって欲しいグラフです。ですから
を
の形で表すためには
と置けばよいわけです。まず
に値を入力する前に
倍しておけばちょうどグラフが
軸に対して対称に移動したものになります。分かりますか?
例えば を
に代入したときに
になるとしましょう。そうすると
で表されるグラフにおいて、同じ出力
になるためには
の中身が1にならなくてはならないわけです。しかし当然
を代入すると
になって
に
が代入されてしまいますので違う値が出力されてしまいますよね。どうすればいいでしょう…。もちろん
を代入すればいいですよね?
つまり、 とは
のちょうど
が
反転したものを入れたとき値が等しくなる点の集合なのです。
この辺まで来るとわざわざBLACK BOXで表さなくても十分理解できるでしょうか?…でも、念のために考えておきましょうか?
この対称移動後の
は図61のようなBLACK BOXで表すことができます。
ちょっと複雑な図になってしまったので説明しますね。本来の
の入力はBLACK BOXの上からの縦の入力になります。そのときの出力
は下に出ます。図のように、判定装置の右に回して、判定装置の右から入力します。
それに対して、BLACK BOXの左から の入力
を入れます。今回は
の方で入力する
とちょうど
が反転した
を入力します。まずフィルターを介して
倍されてしまうので、BLACK BOXへの入力は
の
と同じものになります。だから出力も
と同じものがBLACK BOXの右から出ていますね。それを判定装置に…かけるまでもなくすぐに一致していることが分かります。
つまり、フィルタの前にはちょうど の
が
反転した
を入力したときにだけ判定装置が○になるわけですね。これで
軸対称のグラフを表す式が一発で表現できるようになったわけです。
を
軸に対称移動させたグラフを表す式は
となります。
折角ですから、式(59)を
軸に対して対称移動したグラフとそのときの式を求めてみましょう。
式は元の式が
ですから
と表される
と
の関係は
グラフを書かなくても一発で求まりますね。
まとめますと、
y軸対称と言われたら、元の式のxを-xに変更してやれば終了!
ということです。ちゃんと意味を考えてからやってくださいね。私はいつも図58のような適当なグラフを描いてこの式を導くようにしています。10秒程度で出来ますし。記憶に頼らないというのが、私の中の鉄則です。全ては原理的なイメージから…。
ホーム > 数学のトップページ > 関数の目次 > 関数とは > グラフの対称移動 > y軸対称